智慧印刷工坊

智慧印刷工坊

转载--热控宝典之单室、双室、内置式平衡容器及规程规范

admin 20 24

本次推文分五部分,静心学习。

1、平衡容器水位测量原理2、双室平衡容器3、内置式平衡容器4、汽包水位测量5、DLT1393-2014火电发电厂锅炉汽包水位测量系统技术规程

1、平衡容器水位测量原理





















2、双室平衡容器

双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。


图1双室平衡容器

凝汽室

理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。

基准杯

它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。由于基准杯的杯口高度是固定的,故而称为基准杯。

溢流室

溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。

连通器

倒T字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。它之所以被做成倒T字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。

3、内置式平衡容器

1、差压水位计(老式单室平衡容器)


下面就单室平衡容器的测量误差作一简要分析:如图三所示:

当ΔP2=0时,有公式(5)成立


式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0时)

L:参比水柱高度

r:参比水柱的平均密度

ΔP2:正、负压侧仪表管路的附加差压

这里饱和蒸汽和饱和水的密度(r//、r/)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r通常是按50℃时水的密度来计算的,而实际的r具有很大的不确定性与50℃时水的密度相差很大是造成测量误差的主要原因之一。

单室平衡容器参比水柱温度与DCS修正补偿的50℃或60℃相差很大,带来不确定的附加误差,其误差在100mm以上。

由于云母水位计和单室平衡容器的误差方向不一致,所以要保证各水位计之间的偏差在30mm以内是不可能的,现行是以云母水位计为准,通过改变变送器或DCS软件修正来拼凑的,只能从数值上在一个特定的工况和小范围内使其偏差在30mm以内,是自欺欺人的做法,不能保证锅炉的安全运行。

从上可见要全过程全范围的实现汽包各水位计之间的偏差小于30mm是不可能的。

由于汽包水位测量不准,造成汽包长期高水位运行,降低了旋风分离器的工作效率,使饱和蒸汽带水过多,增加了过热器和汽轮机的结垢,降低了机组的工作效率,加速了过热器的爆管泄漏,存在着很大的事故隐患。

2、内置式单室平衡容器

如图四所示:

H=L-ΔP/g(r/-r//)---(6)

(6)式是(5)式中,参比水柱的平均密度r等于饱和水的密度r/转换而来,L、g为常数,r/-r//是汽包压力的单值函数,ΔP是变送器测得的差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。

内置式平衡容器特点:

1、精确度高,不受汽包内水欠饱和以及外置平衡容器参比水柱温度变化的影响,从公式可以看出变送器所测得的差压值为汽段参比水柱(饱和水)和相同高度的饱和汽静压之差,这一点与以往的任何一种外置式平衡容器不同,而采用外置式平衡容器测量汽包水位不仅受平衡容器下参比水柱温度变化的影响,而且由于补偿公式是假定汽包内水是饱和状态下推算出来,而实际上汽包内的水是欠饱和的,而且随着负荷变化欠饱和度也是变化的,由此可见,采用内装平衡容器的测量精确度远比外置式平衡容器要高。

2、由于汽包的汽侧取样管上焊接有冷凝罐,可以及时向平衡容器中补充冷凝后的饱和水,因而可以保证锅炉点火不久就可投入汽包水位测量。


内置式单室平衡容器图片


汽包水位内置式平衡容器原理图

4、汽包水位测量

锅炉汽包水位补偿公式:


1、汽包水位补偿

水位补偿公式:H=[L*(ρ1-ρ3)*g-ΔP]/(ρ2-ρ3)g

然后用H减去水位零点相对平衡容器下取样点的距离,得到的值就是修正后的汽包水位。L为平衡容器两个取样管间高度(m)

ρ1为凝结水密度(kg/m3)

ρ2为饱和水密度(kg/m3)

ρ3为饱和蒸汽密度(kg/m3)

ΔP为变送器差压(Pa)

H为水位高度(m)

h0为汽包水位零点至下取样管高度(m),H为补偿后水位(m)。

补偿后水位:h=[L*(ρ1-ρ3)*g-ΔP]/(ρ2-ρ3)g-h0.再把单位从米转为毫米。如果L、h0、h单位为毫米,ΔP单位为mmH2O,ρ1、ρ2、ρ2单位为kg/m3。则公式为

h=[L*(ρ1-ρ3)-ΔP*1000]/(ρ2-ρ3)-h0

汽包水位测量分析及补偿

[摘要]汽包水位的准确测量值是电厂重要的测量参数之一,其测量方式很多,目前常用的是静压式测量方法中的连通式液位计和压差式液位计。但当液位计与被测汽包中的液体温度有差异时,显示的液位不同于汽包中的液位,而且其误差还会随汽包压力的改变而改变。襄樊电厂300MW机组,应用汽包水位模拟量信号采用差压变送器测量,并进行汽包压力补偿的测量方法,结果表明,汽包水位运行正常,测量准确,满足运行要求。

1准确测量汽包水位的重要性

大型机组都设计全程给水控制系统,在机组启动到满负荷或停机减负荷及负荷波动中,汽包压力在不断地变化,汽包内的蒸汽和水的密度也随之变化,从而影响汽包水位测量的准确性和全程给水控制系统的投运,危及机组的安全。因为汽包水位过高可能造成蒸汽带水,使蒸汽品质恶化,轻则加重管道和汽轮机积垢,降低出力和效率,重则使汽轮机发生事故;汽包水位过低,则对水循环不利,可能导致水冷壁局部过热甚至爆管。因此汽包水位的准确测量值是电厂最重要的测量参数之一。

2汽包水位的测量方式及存在问题

Hρˊ+(L-H)ρ″=Hˊρ+(L-Hˊ)ρ″

H=Hˊ(ρ-ρ″)/(ρˊ-ρ″)(1)

由于ρ随温度、压力变化而变化,特别在启停过程中,液位计中的液位和汽包中的液位之差总是变化的。根据长期运行的经验,对300MW机组而言,在额定工况时,H=Hˊ十40—60mm(具体情况视保温状况而定)。而且对电接点水位计采说,由于它不是连续指示,不能反映接点之间的水位变化,又由于电接点水位计接点的布置是非均匀的,在正常水位即零水位附近间距小,在远离零水位的两边间距大,当在额定工况下,汽包实际水位在零水位左右时,由于电接点水位计中的水位要低40—60mm,再加上此处电接点的间距,其误差就会更大,有可能达到100mm误差。因而电接点水位计仅能在启动过程和低负荷运行中有效,在高负荷时,仅能作汽包水位的参考,更不能用作调节和保护信号。

3采用差压变送器测量时存在的问题及采取的措施

既然电接点等连通式水位计有不可克服的误差,而汽包水位的准确测量值又是汽包水位必须控制的参数,在300MW机组中,汽包水位模拟量信号采用差压变送器测量,汽侧安装单室平衡容器,其安装如图1所示。

平衡容器中水的密度同样也会因温度和压力变化而变化,产生误差。因此对单室平衡容器采取不保温的措施,使平衡容器中水的温度恒定在室温左右,减小因温度的变化而对平衡容器中水密度的影响,在工程上可以忽略温度对平衡容器水密度的影响。因此在采用差压变送器测量汽包水位时,必须进行汽包压力的补偿,其补偿公式为:

式中H——汽水侧取样管间高度,m;

h0——水侧取样管至零水位高度,m;

△h——汽包水位,m;

ρ——平衡容器中凝结水的密度,kg/m3;

ρ′——饱和水密度,kg/m3;

ρ″——饱和汽密度,kg/m3;

△p——变送器差压,Pa;

Pd——汽包压力,Mpa。

在组态时,对各函数设置应考虑到与汽泡结构数据分开。以便整定计算,因此该补公式可组态如图2所示。

4襄樊电厂汽泡水位的补偿计算

襄樊电厂锅炉为引进型1025t/h控制循环汽包炉。变送器取样高度量=0.86m,h0=0.43m,函数发生器采用8段折线形式。各函数取样值见表1。

将以上数据分别填入组态中,即可完成汽包水位的补偿计算,为使补偿计算后的实际汽包水位的变化值在显示上方向一致,一般将差压变送器反接,即将正端接汽包水侧取样管,负端接平衡容器。这样就要进行差压变送器零点的负迁移,由于现在大都采用智能型变送器,因而无论正反接,皆可容易满足水位变化值和显示上方向一致。同时在DCS系统里,输人点的量程标定也十分简单,所以也可直接将变送器正接。这样就不必进行变送器的负迁移。

如果在现场采用的是双室平衡容器,其水侧平衡室与汽包饱和水相通,用以加热汽侧平衡室中的凝结水。这样,平衡容器内外均可视作饱和水。当差压变送器的正端接汽包水侧平衡室,负端接汽侧平衡室时,其补偿公式为:

△p=h(ρˊ-ρ″)+h(ρˊ-ρ″)-H(ρˊ-ρ″)(7)

△h=[p/(ρˊ-ρ″)]+H-h(8)

当h为H的一半,即零水位为变送器取样点的中点时:

△h=[△p/(ρˊ-ρ″)]+h(9)

其补偿计算与单室平衡容器一致。

在现场调试组态时,汽包水位输入点的上、下限要根据差压变送器的标定换算成实际差压值。为调整方便,数据库中可设为±0.4m,用修改加法器的汽包水位输入端偏置来迁移实际差压值,增益可进行量程转换,压力补偿输入端的增益应填入H值,除法器下游的算法增益用于将量程转换成常用的mm单位,其输入偏置则应设为h0。

5常见故障分析

300MW机组在水位测量时,常见故障有以下几个方面:

(1)变送器的量程满足要求,但最大承受静压值不满足实际要求,这样易使变送器膜片损坏,测不出水位。

(2)汽包水位与水位计之间偏差较大,水位计一般适用于启动过程和低负荷阶段,而在高负荷阶段,则以变送器为主,电接点仅作参考。但若偏差较大,超过100mm以上,就应检查二者的零水位定义是否一致,所设的H值是否与实际值不同,平衡容器水温设置是否正确,电接点水位计保温是否合乎要求。

(3)汽包水位的变化方向与水位计相反,一般为算法参数设置错误,实测差压值与补偿计算中的差压值符号是否一致,可通过修改增益正负号改正。

(4)汽包水位不变化,输出为4mA,检查平衡门是否关闭,若打开,则两边差压为零,故不能正确测量水位。

通过以上补偿,我厂300MW机组汽包水位运行正常,测量准确,完全满足运行要求。

第五部分DLT1393-2014火电发电厂锅炉汽包水位测量系统技术规程